Aminoguanidine ameliorates radiation-induced oxidative lung damage in rats.
نویسندگان
چکیده
PURPOSE To investigate the possible protective effects of aminoguanidine (AG ) on lung damage in whole body irradiated rats. METHODS To evaluate the biological damage of radiation on rat lung tissue, lipid peroxidation products were measured using biochemical parameters. Thirty Wistar albino rats were divided into three subgroups: control (C) , irradiation alone (RT), and RT + AG combined. After sacrificing the rats, antioxidant enzymes catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GSHPx) activities and malondiadehyde (MDA), nitric oxide (NO) levels were evaluated in lung tissue. RESULTS Administration of AG resulted in an increase in the activities of CAT, SOD and GSHPx in the lungs. All were reduced after radiation. In addition, AG administration resulted in a decrease in both NO and MDA levels in lung compared with the irradiated group. CONCLUSION Amnoguanidine increased the endogenous antioxidant defence mechanism in rats and protected the animals from radiation-induced lung toxicity. Moreover, AG may protect against ionizing radiation-induced lung damage because of its antioxidant effect.
منابع مشابه
Evaluating Radioprotective Effect of Hesperidin on Acute Radiation Damage in the Lung Tissue of Rats
Background: Oxidative stress plays an important role in the pathogenesis and progression of γ-irradiation-induced cellular damage, Lung is a radiosensitive organ and its damage is a dose-limiting factor in radiotherapy. The administration of dietary antioxidants has been suggested to protect against the succeeding tissue damage. The present study aimed to evaluate the radioprotective efficacy ...
متن کاملAnti-inflammatory role of piperine against rat lung tissue damage induced by gamma-rays
Background: Radiation‐induced acute lung damages are refractory side effects in lung cancer radiotherapy (RT). Prospective study investigates the possible role of piperine (Pip) as anti-inflammatory agent against γ-rays-induced lung tissue lesions in an applicable rat model. Materials and Methods: Fifty-six Sprague-Dawley rats were divided into four groups: Control, rats were administered...
متن کاملCurcumin Ameliorates Sodium Valproate Induced Neurotoxicity through Suppressing Oxidative Stress and Preventing Mitochondrial Impairments
Background and purpose: Curcumin is a natural polyphenolic compound in turmeric (Curcuma longa). Curcumin has potent free radical scavenger and antioxidant properties that could significantly reduce oxidative damage. Oxidative stress and mitochondrial dysfunction contribute to valproate sodium induced tissue damage. This study investigated the protective effects of curcumin against valproate so...
متن کاملChinese green tea consumption reduces oxidative stress, inflammation and tissues damage in smoke exposed rats
Objective(s):One cause of cigarette smoking is oxidative stress that may alter the cellular antioxidant defense system, induce apoptosis in lung tissue, inflammation and damage in liver, lung, and kidney. It has been shown that Chinese green tea (CGT) (Lung Chen Tea) has higher antioxidant property than black tea. In this paper, we will explore the preventive effect of CGT on cigarette smoke-in...
متن کاملP 27: The Beneficial Effect of Aminoguanidine on Lipopolysaccharide -Induced Memory Impairment and Neuro-Inflammation in Rats
Introduction: In the present study, the effect of an inducible NO synthase (iNOS) inhibitor, aminoguanidine (AG) on lipopolysaccharide (LPS)-induced memory impairment and oxidative stress and inflammation parameters was evaluated. Materials and Methods: The rats were divided into 5 groups and treated: 1) Control (Saline), 2) LPS (1 mg/kg), 3-5) AG 50, 100 and 150mg/kg 30 min before LPS injectio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Clinical and investigative medicine. Medecine clinique et experimentale
دوره 31 4 شماره
صفحات -
تاریخ انتشار 2008